Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast

نویسندگان

  • Elena Vanacloig-Pedros
  • Markus Proft
  • Amparo Pascual-Ahuir
چکیده

Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways

Among the many mycotoxins, T-2 toxin, citrinin (CTN), patulin (PAT), aflatoxin B1 (AFB1) and ochratoxin A (OTA) are known to have the potential to induce dermal toxicity and/or tumorigenesis in rodent models. T-2 toxin, CTN, PAT and OTA induce apoptosis in mouse or rat skin. PAT, AFB1 and OTA have tumor initiating properties, and OTA is also a tumor promoter in mouse skin. This paper reviews th...

متن کامل

Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fas...

متن کامل

تأثیر مخمر ساکارومایسس سرویزیه بر میزان کاهش سم قارچی سیترینین در آرد گندم

Background & Objective: Citrinin mycotoxin is produced by filamentous toxin producing fungi. Saccharomyces cerevisiae yeast has the ability to bind mycotoxins to its cell wall and thus reduce its toxicity. The aim of this study was to determine the amount of Citrinin mycotoxin and its reduction in wheat flour by Saccharomyces cerevisiae. Method: In this study, 15 samples of wheat flour were...

متن کامل

Peculiarities of feed contamination with citrinin and ochratoxin A

Occurrence of citrinin and ochratoxin A in different feed ingredients and compound feeds was screened by accredited methods based on the indirect competitive enzyme-linked immunosorbent assay. High frequency co-occurrence of both toxins was found in wheat grain and processed sunflower seeds. Citrinin levels exceeded those of ochratoxin A in the majority of co-contaminated feed samples, and the ...

متن کامل

Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium.

In order to explore the biochemical scope of ochratoxin A-producing penicillia, we screened 48 Penicillium verrucosum isolates for the production of secondary metabolites. Fungal metabolites were analyzed by high-pressure liquid or gas chromatography coupled to diode array detection or mass spectrometry. The following metabolites were identified: ochratoxins A and B, citrinin, verrucolones, ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016